BIOM5010:
Statistics #2H

Detection Error Trade-off
Training and Test sets

Test Outcomes

- Example:
 - Reality:
 - Patient Has Cancer
 - Patient Has not Cancer = Patient Normal
 - Test Results:
 - Test says Cancer
 - Test says Not Cancer = Test Normal
Test Outcomes

- Example:
 - Reality:
 - Test Results:

 (Test: Cancer)
 Reject H_0
 (Cancer) H_0 false
 (Normal) H_0 true

 (Test: Normal)
 Accept H_0
 TP
 FP
 FN
 TN

 Reality

 Test

 - TP = True Positive
 - TN = True Negative
 - FN = False Negative
 - FP = False Positive

 How serious FN, FP depends on application

Example:

- Test for cancer gives 4 levels
 - e.g. Measures level of protein in test
 - 1 = least, more likely to indicate no cancer
 - 4 = most, more likely to indicate cancer
 - 8 patients in Control group
 - 4 patient in Experimental group

- Terms
 - Control group
 - do not have the condition or receive sham/pacebo
 - Experimental group
 - Have condition or receive experimental treatment
Test for cancer gives 4 levels
- Control:
 - 1,1,1,1,2,2,3,3
- Experimental:
 - 2,3,3,4

Control: Distribution

Experimental: Distribution

Fraction of group

Test Result
• Use a threshold to make decision from score

Sensitivity/Specificity

- **Control:**
 - Threshold: 1.0
 - True Negative (TN)
 - False Positive (FP)
 - False Negative (FN)
 - True Positive (TP)

- **Experimental:**
 - Threshold: 1.0
 - True Negative (TN)
 - False Positive (FP)
 - False Negative (FN)
 - True Positive (TP)
Sensitivity/Specificity

- Need a threshold to make decision from score
- From Distributions Calculate Specificity and Sensitivity

Specificity

<table>
<thead>
<tr>
<th>Threshold</th>
<th>TN</th>
<th>FP</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>1.5</td>
<td>4</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>2.5</td>
<td>6</td>
<td>2</td>
<td>0.75</td>
</tr>
<tr>
<td>3.5</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4.5</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sensitivity

<table>
<thead>
<tr>
<th>Threshold</th>
<th>FN</th>
<th>TP</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2.5</td>
<td>1</td>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td>3.5</td>
<td>3</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>4.5</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Detection Error Trade-off (DET)

- From Distributions Calculate DET

<table>
<thead>
<tr>
<th>Threshold</th>
<th>TN</th>
<th>FP</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>1.5</td>
<td>4</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>2.5</td>
<td>6</td>
<td>2</td>
<td>0.75</td>
</tr>
<tr>
<td>3.5</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4.5</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Threshold</th>
<th>FN</th>
<th>TP</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2.5</td>
<td>1</td>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td>3.5</td>
<td>3</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>4.5</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: you can always get sensitivity or specificity = 100%
• DET curve or Receiver Operating Characteristic (ROC)
• Common Way to show instrument characteristics
• You can always get any value to 100% by setting the other one to zero.
• To properly compare two curves:
 – Compare at one choice of sensitivity
 – Compare Areas under curve
Comparing DET/ROCs

- To compare curves, need to choose an operating level
- Choose acceptable sensitivity
 - Find corresponding specificity

\[
\text{Sensitivity} = 0.6 \quad \text{Sensitivity} = 0.9
\]

At \(\text{sens} = 0.9\), \(A > B\)

At \(\text{sens} = 0.6\), \(B > A\)
Questions

• Is a FP more serious than a FN?
• How do we go about setting a threshold for an algorithm with an output score?
• Under what conditions (on the distributions) can we have sensitivity = specificity = 100%?
• Suggest some clinical scenarios where we would want to trade sensitivity for specificity? Vice-versa?
• The distributions have no information on the size of the data samples. How can we still calculate sensitivity values?